Anthony Wu / Brad Woodward / Darby Wong

Devon Kim / Kanji Furuhashi / Shengli Zhou / Joseph Lai
CSE 403 – Software Engineering

May 4, 2003
Buddy Tracker Life Cycle Architecture
Specifications
Client User Interface Specs

The user interface for Buddy Tracker will have five main components: a login screen, a map view, a chat view, a buddy list, and an options page. ‘Buddy Tracker’ is hereafter referred to as ‘BT’. Switching between the map and chat view, and the options page, is accomplished by clicking on menu buttons at the bottom of the screen.
Login Screen
When the user first starts the program, they will be presented with a screen designed to gather information from the user in order for the application to authenticate with two main services: the BT server, and the Microsoft MapPoint web service. Our initial design is to have four user input fields; two will be for the user name and password for the user on the BT server, while the other two will be for the user name and password for the account with MapPoint.

Since having a multitude of text fields required just to enter the client is cumbersome, it is possible that future specifications will require the MapPoint user name and password to be contained within a BT user profile. Another possible addition is that of a check box that would enable the user to store the entered user names and passwords for future sessions, allowing for greater ease of entry to the application.

Towards the lower right will be a button that, when tapped upon, will submit the user-entered information to the BT and MapPoint servers. Upon verification from the servers, the application will then leave the login screen and enter the map view.

Map View
This screen displays a rectangular road map of a user-specified resolution. Points of interests, such as the user’s current location and any nearby user-specified points of interest or BT users, will be indicated using some graphic.

Tap and Hold Map

Tapping and holding on such a graphic will display information and options for the specific point, such as a title and description.

Single Tap Map
Tapping, without holding, once on the map, will cause the map view to ‘zooming in’. That is, the screen size of the map will remain constant while the map view increases in detail, with a corresponding reduction in geographic region displayed.

Double Tap Map

Tapping twice, without holding, will cause the map view to have an equal and opposite effect, or ‘zooming out’. The extent to which map detail can be increased or decreased in such a fashion is defined by the limitations of the MapPoint service.

Single Tap Scroll Region

On the four (4) sides and in the four (4) corners of the map are eight (8) regions that will scroll the map view north, northeast, east, southeast, south, southwest, west, northwest, upon the user tapping the corresponding region. The amount the map view changes in that direction will be user-specified.

Tap and Hold Scroll Region
The user will have the option of tapping and holding the region, which will cause the map to continually scroll in that direction. The speed at which the map scrolls will be defined as a function of the length of time the tap has been held, with a built-in upper threshold.

Chat View
This screen contains components necessary to allow textual communication with another mobile user. We are planning to design and implement our own chat server.

The screen has three (3) main components: display of current buddy, conversation pane, and textual input pane accompanied with a ‘submit’ button.

Display of Current Buddy

The screen name of the individual whose conversation is in the conversation pane is displayed as the selected value of a drop down menu. The purpose of the drop down menu is to allow the user to easily switch between conversations with different buddies.

Conversation Pane
This is a read-only text display field that will display previous messages sent to and from the user to a specific buddy. The text is color-coded based on the user from which the message originated.

Textual Input Pane

This text input pane allows the user to input text to be transmitted to the current buddy. Upon completion, the user can transmit the message by tapping the ‘submit’ button, which will be to the right side of the textual input pane.

If time allows, possible improvements to this screen could include support for emoticons and the use of different fonts, font sizes, and colors in the conversation. Additionally, a small button could be added to a side of the drop down menu, which would display profile information for the current buddy when tapped.

Buddy List
The buddy list is perhaps the most sophisticated component of the user interface. The buddy list will be accessible from both the map view and the chat view. The buddy list consists of a tree-structure contained within a narrow pane docked to the left side of the screen, overlaid upon either the chat or map view.

When the boundaries of the pane are double tapped, the pane will collapse into the left side of the screen, so that only the border of the pane is showing on the screen. The buddy list can be brought back into view by double tapping on the visible part of the border. This will allow for easy access to the buddy list from both the chat and map views, without taking up a tremendous amount of screen real estate.

The tree-structure of the buddy list will contain buddies and the groups users have put them in. This is analogous to the Explorer view in Windows XP, with folders and files. As such, each group entry will have a dotted box that the user can tap to toggle showing and hiding the members of that group. When contracted, the box will contain a cross, when expanded, the box will contain a dash.

Next to each entry is space for two dots. These dots enable the user to quickly configure privacy options. One of spaces will represent the visibility of the buddy list entry to the user, while the other represents the visibility of the user to the buddy list entry. The former can be used to reduce the number of graphical markers in map view, making it easier for the user to view the status of a select group of individuals. The latter can be used by the user if he or she does not wish the entry to be able to view his or her status and location. So while the former is used for convenience, the latter is used for privacy.

Grayed Dot

A grayed out dot indicates that the status for either has been toggled off, so that the buddy is either not visible to the user, or the user is not visible to the buddy.

Colored Dot
If the dot is colored, then the status has been toggled on. That is, the buddy is either visible to the user, or the user can be viewed by the buddy.

No Dot
If the ability to toggle is not available, then no dot exists. This situation can occur when the entry does not have a MapPoint subscription, since the ability to view or be viewed by this user does not exist.

In addition to the dots, the user can manage and interact with the buddy list by tapping on the buddy list entry itself.

Single Tap
If the user taps an entry in the buddy list once, the application will respond depending on whether it is in map or chat view. If currently in map view, BT will display a map image centered at the location of the entry tapped upon, with a graphical indicator. If currently in chat view, BT will switch from any pre-existing conversation to a new one with the entry tapped upon.

Tap and Hold
If the user taps and holds an entry, the application will display a context menu including options allowing the user to add the current entry to another group, move the current entry to another group, remove the entry from the current group, or remove the entry from all groups. Tapping on one of these context menu options expands a secondary menu containing a list of groups to choose from.

Additional options on the context menu will allow the user to replicate the behavior obtained with a single tap. That is, the options will allow users to choose whether to switch to a chat view with the entry, or locate the entry in a map view. This will allow users to easily bring up the chat view with an entry while in map view, and vice versa.

One final option on the context menu allows the user to edit details in the profile for the selected entry.

At the bottom of the buddy list, are buttons that duplicate the functionality of the context menu obtained through tapping and holding.

Options Page

This page will contain various options the user can specify. The options will be remembered across sessions so that the user should have to use this page only infrequently.

Server Specifications

Specific Feature Set:

· Be able to direct dialog and chat between two client applications

· Provide authentication and login security for subscribing clients

· Hold a database of relevant information that will be used to store user information

· Integration with PlaceLab database and API (to relay user locations)

· Provide a public web API for client applications

· Have methods that relay information between clients

· Use input data to formulate database queries to gather data

· Accept update calls (through API) from clients that update internal server database

Reliability and Performance:

· Account for heavy server traffic at peak times

· Try to use local data structures for dynamic data rather than databases; service requests will be fast

· Because we are implementing a web service, packet transport is already taken care of

· Keep web service running at all times (maybe shut down for maintenance once a week)

· Administrator must keep track of database structure and content to ensure consistency

· Keep an index on frequently queried tables to speed up performance

Security:

· Server will use RSA encryption when sending out packets, and RSA decryption when receiving packets.
· Server is secured with a firewall to prevent identity theft.
PlaceLab Interface Specifications
Client side

Capabilities

· Detects Wi-Fi access points (AP), retrieve MAC address of these AP towers, and send this information to the BuddyTracker server.

· The information gathered by this interface includes at least the MAC address of these towers and the strength of the signal.

· Has an interface that supports communication with the BuddyTracker main program and the server side PlaceLab service via the XML RPC socket.

Interface

· Automatically update the detected AP information with a specified interval

· The BuddyTracker main program can, alternatively, invoke the function to update the location information

Appearance

· An indicator of accuracy based on amount of available information (option)

Performance and Reliability

· Highly dependent on those of the Wi-Fi interface module on the mobile device
· Dependent on the amount of available information from AP towers

Security Requirement

Since this is a facility that simply sends the environment information in the real world, there is no serious security issue concerned. However, to prevent the server side service from receiving fake information, we might attach an encrypted ID to each packet.
Server side

Capabilities

· Receives a request for location translation along with AP tower information for the translation
· Refers local or Intel’s PlaceLab database for AP information
· Computes triangular translation by combining the information from the AP database and client side
· Sends the resultant location information to the BuddieTracker main service
*Although writing the location information to the database was one of the options, we chose to make PlaceLab service to send the information to the main service because the information was going to treated dynamically.
· Has a feature to update the AP database from Intel PlaceLab service if implemented to use its own database

Interface

· Command line user interface (option)
· Communication interface for client side PlaceLab interface
· Interface for server-to-server communication via XML RPC sockets
Appearance

· GUI for this service is very optional, and would probably not be implemented.

Performance and Reliability

PlaceLab API allows programmers to choose to use the database of APs on our own dedicated machine rather than Intel PlaceLab service. Thus, we can monitor the performance and control how to distribute the load among multiple servers if necessary. This will be determined based on future experiments.

Security Requirement

Refer security requirement section of the client side PlaceLab interface.
MapPoint System Specs

The MapPoint service will provide the following features:
· Render maps of multiple locations

· Render map to image format of client's choosing (gif, png, 1-bit black & white)

· Render map of variable sizes

· Render map with icons chosen from a provided set by client

· Render map with text of client's choosing on the map and per icon

· Return “hotspots” that specify areas where icons were rendered to the client

· Render up to 50 independent maps in one transaction

· Cache any number of map images for up to several minutes for that client

Performance:
· Minimize latency for interactive use by client

· Minimize network usage to achieve lowest latency

· MapPoint service will NOT cache transactions and no guarantee can be made for the speed of each map render

Security:
· Security will be provided by .NET-provided features and the MapPoint service itself through SOAP.

· MapPoint is stateless, much like HTTP, so the burden of caching is mainly upon the client.

Architectures

Client User Interface Architecture

The client and user interface for the Buddy Tracker (BT) will be written in C# using .NET so it can easily integrate with the other components of the project.

As an overview, the client will be a handheld application that is responsible for BT user interaction, determining the user’s MAC address, transmitting the address, requesting coordinates, and receiving data (coordinates and chat) from the BT server, and requesting, receiving, and displaying Map Point data from the Map Point service. The client will also be responsible for periodically transmitting a “still connected” signal to the BT server so the server can easily know who is on or offline.

Program Startup - Login Screen

The program will begin with the Login Screen, which will need to send the Buddy Tracker login information to the BT server for validation. If the information is valid, the client will then display the Map Screen. As of now, we will look into what type of security is provided for securely sending the login information, but as of now we are not intending to write any custom security measures.

Display

From a code oriented view, the groups and users can be displayed using a tree-view component in .NET. This tree-view structure will be contained within a pane component that spans partially across the screen from the left hand side. We leave a few pixels between the right edge of the tree-view component and the right edge of the panel component, so that if the user taps on the right edge of the tree-view component, the tree-view component is hidden from the user, and the panel shrunk to the size of the gap between the right edges of the two components.

Map Screen

The map portion of the BT has only 1 screen, the map that displays the selected points of interest around the user, but consists of two main blocks to write.

Displaying the Map

First, the client must periodically find the users MAC address and send it to the server, who will then send back the coordinates of the client. Second it uses information from the Buddy List to periodically send a request to the BT server for the coordinates of the selected Buddies. Third, the client takes the coordinate data returned from the BT server and makes a query to Map Point for a map displaying the desired Buddies and/or other points of interest.

Map Functionality

Map functionality will include such features as zooming, moving the map, and tap-able features. Other than Map Point dependant features, which will require additional Map Point requests, these features can be written without interaction with non-client modules. It will have to interact with the Buddy List.

Getting the Map

The map view is composed of images downloaded from the BT server. Making the request for the image consists of sending the BT server the list of contacts you’d like to have included in the map. The BT server will return a map image along with a list of the contacts and their positions on the map.

Displaying the Map

From a code-oriented view, the map can simply be displayed as part of a panel component in .NET. For performance reasons, the map obtained from the BT server could be larger than the region it is displayed in. This will allow users to scroll areas of a map without waiting for a new image from the BT server.

Tap Detection

The client does tap-detection to see if the user clicks within some region surrounding a contact position. If the tap occurs in an area with overlapping regions, the client will display a context menu allowing the user to choose the contact intended.
Chat Screen
The chat architecture is fairly simple. The user can access the chat screen by the tab at the top of the screen or the Buddy List. Once the user taps the Send button, the recipient and message will be sent to the BT server who will send the message to the recipient’s client. As such, the Chat Screen’s interaction with other modules is necessary but has a very simple interface.

Buddy List

While simple in appearance, the Buddy List has connections to every other piece of the client. As well as providing its own Buddy management features, it must interact with both the Chat and Map screens.

Server Architecture

Our server side architecture will be split into two major components: a client server front end that interfaces with client requests, and a Microsoft SQL Server backend which holds both dynamic and static data about clients. The front end will interact with the backend via SQL queries, and the backend will return requested data to the front end in the form of a table object. Below, we will outline the major architecture details for both the front end and backend.

Front-end
· A superclass Request which represents any type of request object. All incoming messages received from clients will be objects that extend this class. For example, we have subclasses such as AuthenticationRequest, SendMsgRequest, IncomingMsgRequest and UpdateLocationRequest that all represent different types of requests that a client machine might send. The type of request will be determined by a header in the sent package; the value of these bytes will signify the request that is being made.

· A RequestListener class which essentially sits in a loop and continually listens for requests made by clients. The class will service requests as soon as they are made, and any other incoming requests made at the same time will be placed on a FIFO queue. One point of interest is the way to handle location updates. Basically, when a client detects that he/she has moved to a new tower (they have physically moved), they need to send a request to the server with an updated location. The server will service this request by updating its internal databases immediately, but it will not immediately send the update back out to the other clients. Instead, it will perform a synchronous update by storing updated location requests in a queue. This is to avoid server overload as well as race conditions.

Internals:
listen() – Listens for client requests

stop() – Stops the server

API:

processRequest(Request theRequest) – a public method that is called by the client
· A RequestService class that is responsible for servicing requests. This class will handle the server servicing client requests. This could involve querying the backend database or accessing other web services.
· A SQLInterface class which serves as the interface between the frontend and backend. Given a request object, the SQLInterface class will generate SQL queries to send to the database. Each different type of request will be generating a different query, and the queries will be sent to different databases.

API:
generateSQLQuery(Request r) – Generates the appropriate query string based on the request type. This method also sends the generated query string to the appropriate database, and returns the query result as a data table object.

Back-end

· The backend will consist of a Microsoft SQLServer database consisting of different tables.

· The primary key for most types of lookups will be user ID’s. These will be unique, since two clients will never have the same user ID.

· A table that maps user ID’s to passwords for authentication.

· A table that maps user ID’s to buddy list names (these will be concatenated as one big string)

· A separate database holding PlaceLab information. This data currently exists and simply needs to be copied onto the server so that clients can request location info from it.

· Dynamic data (such as who’s logged in, GPS coordinates of current users,) will be stored in local data structures. This is to prevent having to query the database for constantly changing data

· Also, we will index the SQL tables to provide faster access to buddy lists

PlaceLab Services Architecture
Operational Concepts

Client-side PlaceLab is a module of client-side application for BuddieTracker service. Although there would not be many interactions between this and the main program, the user of this module is the main program of client-side application.

Server-side service is a stand alone application that supports the BuddieTracker user-data control system.

System and Software Architecture
Locating client device is achieved by the collaboration of the applications that reside in client side and server side. Both applications are implemented in Java with use of PlaceLab API. Since these programs are independent from the main programs in both client side and server side, the top level module of these programs must provide means of communicating with the main programs, which are written in C#. This cross-language communication will be established with XML RPC socket passing.

Client side PlaceLab interface
The basic components are classes that retrieve the information of access points, a structure that holds it, and a WiFi card interface.

Top level wrapper class

Establish an XML RPC socket communication with the client side main program coded in C#, as well as a communication with sever side PlaceLab service.

org.placelab.core.WiFiSpotter

A module that scans on 802.11 wireless cards and returns a Measurement object

org.placelab.core.Measurement

A module that encapsulates MAC address, signal strength, and human readable network ID.

spotter.c

A native code that is an interface between Java code and a WiFi card

Server side PlaceLab service
Top level wrapper class

Establish an XML RPC socket communication with the sever side main program coded in C#, as well as a communication with client side PlaceLab interface.

org.placelab.core.Tracker

A class that returns a location estimate based on a set of AP information received with the request

org.placelab.core.WiFiMapper

A class that access the database of AP information and add location information to the Measurement objets

org.placelab.core.Beacon

A class that represents WiFi tower

PlaceLab Database

Database of access points

Execution-oriented view of PlaceLab Services
Client-side MapPoint Architecture

We will use the MapPoint web service, provided by Microsoft Corporation, to retrieve geographical map data at the client side. In addition, MapPoint will also be used to "mark" locations on the map corresponding to other users and assist the UI in associating "buddy" data to regions on the image.

The following steps are done to retrieve an image for the desired map for processing by the consumer:

1. Authenticate with MapPoint RenderServiceSoap at client-side (uses our customer id and password). Set PreAuthenticate to True.

2. Determine appropriate parameters (outlined below)

3. Use RenderServiceSoap class method GetMap to request a map with a known center point or GetBestMapView (up to 500 points of interest).

4. Wait for response from MapPoint

5. Process the MapImage(s) returned by GetMap

To perform the web service requests, we will use the "GetMap" method. The method requires the following:

· A map description that formats the returned image (MapSpecification)

· MapOptions

· "PushPin" array that specifies markers on the rendered map images

· One or more "Map Views" to render images, each for specific latitude / longitude

The MapPoint web service is stateless to the consumer and thus each request is independent of previous requests from the consumer. For a highly interactive client user interface, this means that we will have to implement caching instead of relying upon MapPoint to be consistently responsive to our requests. However, it is also possible to simply request very large maps infrequently instead of requesting smaller maps more frequently. This can be decided by the client to maintain concurrency with the BuddyTracker location database and for the best responsiveness to user requests. The MapPoint web service can also cache images for several minutes, which may be used by the consumer.

For rendering the markers for individual buddies being tracked, we will specify an array of "PushPin" objects, a part of the "MapSpecification" class and periodically send all the coordinates from the client. There are many options for how these can be rendered (including text labels and custom icons), but we are limited to 100 PushPins per transaction.

The following shows the hierarchy of classes and relevant objects with their functions:

class RenderServiceSoap (top-level class to instantiate)

method GetMap(class MapSpecification) return MapImage[]

class MapSpecification (required)

String DataSourceName (required) <- set to "MapPoint.NA" for North America

class MapOptions as Options <- set to MapImage.MimeData return

ImageFormat Format <- set Height, MimeType (format, including image/vn...), Width

MapStyle Style <- set to PhoneBW for B/W image

class Pushpin as Pushpins[] (up to 100)

String IconDataSource <- set the icon for the pushpin

String IconName <- set the (buddy) name for the icon

String PinID <- uniquely identifies the pin

Bool ReturnsHotArea <- set True (a rectangle that has the spot for the pin to make clickable)

class MapView as Views[] (required)

LatLong ViewByScale.CenterPoint <- center of the map to be rendered

Zooming ViewByScale.MapScale <- how much are we zoomed out?
Data Structures

Here is an overview of the internal representation of data objects and some of their member variables and methods.

“The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them.”

Login

- Screen name

- Password

User Configuration Profile (Store on client & server)

- Buddy List object (next bolded item)

- GUI preferences

- fonts / colors / object arrangements

- Feature set preferences

- Privacy controls (access control lists)

- Store default preferences

- Auto-store login information

- Save/Load profiles

Buddy List

- List of Groups (which in turn contains buddies)

Location

- GPS location (if available)

- Name of point of interest (if available)

- Manually entered by user (option)

Privacy Interface

- Hide/Show from buddy or group

- Hide/Show buddy or group in my view

Individual Buddy Class implements Privacy Interface

- Screen Name / Service Handle

- Alias

- Email (use system hook to activate mail app)

- Messages (like voicemail, left on server, notify on sign on)

- Buddy Profile (update at sign-on, download from server)

- Notes/Comments

- Last Reported Location (if available)

- Notification Preferences (i.e. notify when signing on / nearby?)

- Privacy Preferences (block, status/visibility)

- show buddy on MY map?

- allow buddy to see me on THEIR map?

- Methods: Add/Remove/Edit all fields

Buddy Group Class inherits Buddy Entity implements Privacy Interface

- Group Name

- List of buddies

- Notification Preferences (see buddy)

- Privacy Preferences (see buddy)

- Methods: Add/Remove/Edit all fields

Conversation object

- Reference to associated buddy currently chatting with

- Cache of recent messages (for showing and hiding at will)

need length limit – i.e. 100 lines

Map object

- List of users we want to track

- Current map image

- Cache of recently used maps

- Methods: navigation and zooming

- go N, S, E, W

- zoom in / zoom out
Project Milestones
Schedule

May 16 – Feature Complete Alpha

· User Interface frozen

· Server fully implemented

· PlaceLab correctly locates clients

May 30 – Stable Beta, bug fixes

June 3 – Polished, deployable application ready for Demo
Task Assignment
User Interface

Darby Wang, Brad Woodward
Data Structures & Integration
Anthony Wu

Server & Database

Shengli Zhou, Joseph Lai
Location-aware Services

Devon Kim, Kanji Furuhashi

XML RPC

Communication

Client Side BuddieTracker Main program

Detect APs

Translated AP information

via XML RPC Communication

AP information

Access Point

Server side PlaceLab Service

BuddieTracker Server

Device Interface

PlaceLab API

Top Level (XML RPC)

